
CHEVALLEY-EILENBERG NOTES

The basic goal of this theory will be

1. Preliminary Whispers

The standard narrative for the Chevalley-Eilenberg construction consists of construct-
ing a finite dimensional model of the cohomology of a compact connected Lie group, G in

terms of it’s Lie algebra, g. 1

1.1. Cohomology of Compact Lie Groups. We begin with the following technically
useful lemma:

Lemma 1. G has a bi-invariant metric and volume form.

With this metric, parallel transport gives a map:

g∨ ↪→ Ω1(G)

Along with:

g ↪→ X(G)

It’s not difficult to show that the image of this map is closed under the Lie bracket, so that
g obtains the structure of a Lie algebra. Our next goal will be to

Definition 2. Let the Maurer-Cartan form, ΘG ∈ Ω1(G) ⊗ g denote the adjoint of the
first equation above.

Remark 3. For now on, everything we say must be taken in a graded commutative sense.
For example, we can view the map encoded by the Maurer-Cartan form as

g∨[−1]→ Ω1(G)

and the Maurer-Cartan form as living inside:

Θg ∈ Ω1(G)⊗ g[1]

By definition, the above map uniquely extends to a map of graded commutative alge-
bras:

Sym(g∨[−1])→ Ω•(G)

Remark 4. One can use formal nonsense to construct an equivalence:

Symk(g∨[−1]) '
(
∧k (g[−1])

)∨
Note that this isomorphism requires dividing by the symmetric group.
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For obvious reasons, we’d like to extend this to a map of commutative differential
graded Lie algebras. In order for this to happen, we need only fill in the left map of the
commutative diagram:

Sym2(g∨[−1]) Ω2(G)

g∨[−1] Ω1(G)
Θg

Q ddR

which determines it’s behavior on all of Sym(g∨[−1]). This is relatively, straightforward,
using the explicit formula for the deRham differential in terms of the bracket of vector
fields. The result is that:

Q = [−,−]∨

In other words, the Maurer -Cartan form encodes the lie bracket. In the notation of
differential operators:

Q2 = cki,jc
k ∂2

∂ci∂cj

where ck is a basis for g∨, and cki,j are the structure constants for g. Therefore, we can
recover the Lie structure via Taylor coefficients:

∂2

∂ci∂cj
|c=0Q(ck) = cki,j

Obviously we can view Θg ∈ Ω•(G)⊗g, which is a differential graded Lie algebra with
differential ddR. The commutativity of the above square may be expressed as the infamous

Lemma 5. Maurer-Cartan Equation

ddRΘg = −1

2
[Θg,Θg]

expressing the fact that it’s self-commutator is null-homotopic in Ω•(G)⊗ g

Definition 6. Given a lie algebra g, the Chevalley-Eilenberg cochains on g is the commu-

tative algebra: 3

CE∗(g) :=
(

Sym(g[−1]),Q)

The construction of an explicit contraction 4 (which requires that G be compact) shows
that

Theorem 7. The inclusion, determined by the Maurer-Cartan form, induces an equiva-
lence:

CE∗(g) ' Ω•(G)

which is pretty cool, as the right hand side is infinite dimensional, while the left hand
side is finite dimensional. It further shows that we have an algebra description for the
rational homotopy type of ΩBG.

Finally, we can see that the multiplication comes from the diagonal map:

CE∗(g→ g× g)



CHEVALLEY-EILENBERG NOTES 3

1.2. Deformations. Note that every η ∈ CE2(g) gives a map:

∧2g
η−→ R

We can use this to “deform” g. In other words, construct a Lie algebra structure on:

g⊕ R · ~

So that:

[c0, c1]η = [c0, c1] + η(c0c1)~
and 1 commutes with everything else.

In other words, we have a fibre sequence of Lie algebras:

R · ~→ gη → g

which is conventionally referred to as a central extension.
Of course, not all antisymmetric pairings give Lie algebra extensions extensions. An

explicit computation shows that this occurs when:

Qη = 0

Moreover, we can use the data (if it exists) Qη1 = η to construct an equivalent of Lie
algebras:

gη ' g⊕ R · ~
The most famous example of such a central extension comes from the symplectic form

of a symplectic vector space. Here, the g are linear functions on the symplect form vanishing
at the origin, and the Poisson bracket gives the central extension. Lie algebras of this type
are commonly referred to as Heisenberg Lie algebras, although this conceptualization is

due to Dirac. 5

2. The General Case

We go through a more general description of the above construction.

Remark 8. Let’s fix a finite group G. We’ll denote the category of G-Sets as SetG. We can
view every set as a G− Set, via the trivial action, giving a functor:

Set
trivG→ SetG

One can check that this functor admits a left adjoint:

X → X/G

Therefore, we can think of the quotient as being defined as the left adjoint to the trivial
action functor.

We can repeat the above story, but for an augmented associative algebra A → k,
making k into an A-module. In this case, we have a map:

Modk
resA→k−→ ModA
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Which admits a left adjoint:

ModA → Modk

M → k ⊗AM6

The universal enveloping algebra, U(g → 0), provides an interesting example of aug-
mented associated algebras. Moreover, it’s not hard to convince oneself that g-representations
are equivalent to modules over the universal enveloping algebra. Therefore, we obtain a
functor:

Repg → ModU(g)

k⊗U(g)(−)
−→ Modk

3. An Explicit Model

Although the above definitions has a few advantages, in applications, one wants to

work within an explicit model. 7 In lieu of going through the explicit construction, we

outline the essential ingredients, and simply give the explicit model. 8

The basic idea is to construct a cofibrant of the trivial module given by the universal
enveloping algebras augmentation U(g)→ k. This is accomplished by constructing a con-
tractible Lie algebra equipped with an inclusion from g, and apply the universal enveloping

algebra functor. The underlying graded chain complex is simply the cofiber of g → 0. 9

The trick is to construct a Lie structure on this cofiber. This is conventonally refered to as
Cone(g) for obvious reasons. With this in place, after a check of model categorical stuff,
we see that

k ⊗U(g) M ' U(Cone(g))⊗ps
U(g) M

From this, some ore homological manipulations produce the following description.
As this discussion was meant to be explicit, we’ll give our description in terms of a

basis for g and M and structure constants. For simplicity, we’ll restrict ourselves to lie
algebras and representations concentrated in degree 0.

• g = k · {ci}
• M = k · {mn}
• [ci, cj ] = ckijck
• ci ·mn = mk

inmk

Definition 9.

CE∗(g,M) :=
(

Sym(g[1])⊗M, ckij
∂2

∂ci∂cj
+mk

inmk
∂2

∂ci∂mn

)
We refer to this differential as the Chevalley-Eilenberg differential, and this chain complex
as Chevalley-Eilenberg chains with coefficients in M or Lie algebra chains with coefficients
in M . When M is the trivial 1-dimensional representation will be denoted:

CE∗(g)

The homology groups of these linear objects are referred to as Lie homology

Using this model, we see that:
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Lemma 10.
H0

(
CE∗(g,M)

)
= M/[g,M ]

The right-hand side is usually referred to as the annihilator, and is a relative coarse
invariant of the representation.

We can immediately read off a few properties of this functor:

Lemma 11. There are equivalences:

• CE∗(FreeLie(V )) ' k ⊕ V [1]

• CE∗(trivLie(V ))10 ' Sym(V [1])

• CE∗(g× g′) ' CE∗(g)⊗ CE∗(g
′)11

Some nontrivial category theory establishes the following:

Theorem 12. The Chevalley-Eilenberg construction:

CE∗(−) : AlgLie → Modk

preserves colimits.

The third property of 11 implies that we can endow CE∗(g) with the structure of a
co-(unital commutative algebra) via:

CE∗(0→ g→ g× g)

For example:
∆(ci) = 1⊗ ci + ci ⊗ 1

Lemma 13. The Chevalley-Eilenberg chains on a Lie algebra has a canonical co-(augmented
commutative algebras) structure. In other words, it factors through co-(augmented commu-
tative algebras).

Remark 14. In particular, Chevalley-Eilenberg chains on the trivial lie algebra is the co-
(free augmented commutative algebra).
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Notes

1. For our purposes, g := TeG. The relation between g in this sense and left invariant vector fields will follow
shortly.

2. A strictly necessary exercise is to show the relationship between the equation d2
dR = 0 and the Jacobi-

identity.

3. for now on, everything we say will be commutative with respect to the standard . In other words, Koszul
sign rules will be implicit in our discussion

4. The author is not going through this because they’re lazy. It’s a really gorgeous contraction, an absolute
must-see blockbuster of a technique.

5. Poisson brackets, despite being very helpful computational tools in classical dynamics, was esoteric and
almost forgotten in Dirac’s time. He had to dig into the library to find a reference on it.

6. The reader will excuse us for omitting the derived language. We of course mean derived tensor product.
This can be abstractly expressed as a bar construction, but the convention approach is to just

6. The reader will excuse us for omitting the derived language. We of course mean derived tensor product.
This can be abstractly expressed as a bar construction, but the convention approach is to just

7. Here, explicit model means a graded vector space with a differential and an algebraic structure which exists
on-the-nose.

8. Many authors take the pedagogically responsible route of simply stating this model as the definition.

9. Whose underlying graded vector space is g⊕ g[1].

10. Trivial means abelian. It has ”trivial brackets”

11. This equivalence requires reordering and splitting monomials into pieces coming from g and g′. Therefore
it involves some combinatorics of partitioning and Koszul sign rules
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