Asymptotic Computations of MLEs ------------------------------- We apply the Fundamental Theorem of MLEs to a few computations .. admonition:: Exercise The relative entropy of the empirical distribution and distributions on a bit. Recall the classical coordinates on probability distributions on :math:`\{0,1\}`: .. math:: \begin{align*} \mathrm{Prob}(\{0,1\}) & \overset{\simeq} \longrightarrow \mathbb{R} \\ \rho &\longmapsto \rho(0) = p \end{align*} given data :math:`X \in \{0,1\}^{times N}` of size :math:`N`, drawn from a distribtion :math:`\rho` and a distribution :math:`\rho_\theta`: .. math:: \begin{align*} \mathcal{D}(\rho_X || \rho_\theta) &\approx \mathcal{D}(\rho || \rho_\theta) \\ &= - \bigl(\rho \log\rho_\theta + (1-\rho)\log(1 - \rho_\theta) \bigl) + \mathcal{S}(\rho) \end{align*} where the last term is the entropy of the empirical distribution, and does not depend on :math:`\rho_\theta`. .. admonition:: Example We now compute the standard devation of :math:`\hat{\rho}_\theta`, using the computation above and the fundamental theorem. As we are in dimension 1, the hessian is just a second derivative: .. math:: \begin{align*} \sigma_\theta &= \partial^2_{p_\theta} \mathcal{D}(\rho || \rho_\theta) \lvert_{\rho_\theta = \rho} \\ &= \bigl( \frac{1}{p} + \frac{1}{1-p} \bigl)^{-1} \\ &= p(1-p) \end{align*} This recovers a result which is commonly justified using the central limit theorem. I prefer this derivation. .. admonition:: Exercise The relative entropy of the empirical distribution and multinomial distribution .. admonition:: Example distributions on a finite set compute the hessian find normal coordinates of the hessian say something interesting .. admonition:: Exercise Recall the standard coordinates on the space of normal distributions on :math:`\mathbb{R}` in terms of it's first two cumulants: the expected value and squared standard deviation. .. math:: \begin{align*} \mathcal{D}(\rho_0 || \rho_1) &= \frac{1}{2} \Bigl( \log \bigl( \frac{}{} \bigl) \end{align*} Here, we are working in units in which: .. math:: \mu_0 = 0, \sigma_0 = 1 .. admonition:: Example normal distribution with fixed standard distibution compute the hessian find normal coordinates of the hessian say something interesting .. admonition:: Exercise The relative entropy of the empirical distribution and .. admonition:: Example general normal distributions compute the hessian find normal coordinates of the hessian say something interesting .. admonition:: Exercise The relative entropy of the empirical distribution and .. admonition:: Example exponential distribution compute the hessian find normal coordinates of the hessian say something interesting .. admonition:: Exercise The relative entropy of the empirical distribution and .. admonition:: Example poisson distribution compute the hessian find normal coordinates of the hessian say something interesting .. note:: these are spherical and hyperbolic metrics